ARMY REeseArRcH LABORATORY

OneSAF Test Bed (OTBSAF) Automation

by Ronald D. Anderson and My Van Hoang Baranoski

]
ARL-TN-0242 May 2005

Approved for public release; distribution is unlimited.

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

DESTRUCTION NOTICEL Destroy this report when it is no longer needed. Do not return it to
the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TN-0242 May 2005

OneSAF Test Bed (OTBSAF) Automation

Ronald D. Anderson and My Van Hoang Baranoski
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

Form Approved
REPORT DOCUMENTATION PAGE oM A g

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
May 2005 Final November to December 2004
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

OneSAF Test Bed (OTBSAF) Automation

5b. GRANT NUMBER

Sc. PROGRAM ELEMENT NUMBER

7]

d. PROJECT NUMBER

622618H8011

6. AUTHOR(S)

Ronald D. Anderson and My Van Hoang Baranoski (both of ARL)

Se. TASK NUMBER

2]

f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
U.S. Army Research Laboratory REPORT NUMBER
Weapons and Materials Research Directorate ARL-TN-0242

Aberdeen Proving Ground, MD 21005-5066

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A method of automating the OTBSAF (OneSAF Test Bed) combat simulation program is described, including source code
additions, installation steps, and a sample run. The programmed stop criteria are based on simulation time and combat vehicle
damage. These new functions allow the program operator to prepare and complete many simulations without constant
monitoring and intervention, thus saving man-hours while a suite of runs necessary to gain required confidence levels of results
is completed. Output information includes a time-sequenced list of vehicle status conditions and the final stop criterion.

15. SUBJECT TERMS
OneSAF; OTBSAF; semi-automated forces; simulation

17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: OF ABSTRACT OF PAGES Ronald D. Anderson
2. REPORT b. ABSTRACT <. THIS PAGE SAR 50 19b. TELEPHONE NUMBER (Include area code)
Unclassified | Unclassified Unclassified 410-278-6102

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

i

Contents

6.

Introduction

Changes in Source Code — Maximum Run Time Shutoff

2.1 Subdirectory StC/OTBSAFocoiiiiiiee e

Changes in Source Code — Shut-off Based on Vehicle Kill Percentage

3.1 Subdirectory StC/OTBSAFoooiiiiiiiiieeeee e
3.2 Subdirectory lbSIC/IDENtILYeecvieiieiiieiieeie e
3.3 Additional Filesooiiiiiiiiiiiie s

Adding Features to OTBSAF Version 1

4.1 Subdirectory [ibSrC/IIDERLILYcc.ceeueeeceieeiiieiieeiieeie et
4.2 SubdireCtory SFC/OTBSAFcc.ooeeeeeeeeeeeeeeeee et

Summary

References

Appendix A. main.c Code Changes for Maximum Run Time Feature

Appendix B. main.h Changes for Maximum Run Time Feature

Appendix C.

Appendix D.

Appendix E. libkillstop.h Header File

Appendix F. check_list.c Function Source Code

Appendix G. print _vehicle_info.c Function Source Code

Appendix H. libentity.h Header File Source Code Additions

Appendix 1. ent_tick.c Source Code Addition

il

main.c Code Change for Vehicle Kill Percentage Termination

main.h Code Changes for Vehicle Kill Percentage Termination

11

13

15

17

19

21

27

29

Appendix J. Sample VehicleInfo File

Appendix K. File GNUmakefile.in

Appendix L. Sample Parser File

Appendix M. Controller File for OTBSAF Simulations
Appendix N. Sample Simulation Output File

Distribution List

v

31

33

35

37

39

43

1. Introduction

Combat simulation programs often use probabilities to determine results of actions, such as how
much damage will be inflicted upon a vehicle when it is hit by an enemy round or whether an
observer will notice a distant enemy vehicle within a given time period. If the probabilities are
assigned through a random process (or Monte Carlo function), then the outcomes are also
random. The results of such a study are given as probabilities of outcomes within certain
confidence levels. The certainty of a confidence level is determined through many iterations of
the simulation. When a simulation program has no capability for automatic initiation or
termination, the scientist responsible for the statistical analysis is often required to manually start
and monitor the program for each iteration—even when there is no need for human-computer
interaction during the program execution other than initial setup.

The OTBSAF (/) program (OneSAF [semi-automated forces] Test Bed) uses Monte Carlo
methods to determine probabilities of the actions and results of combat. Therefore, a single
combat result is seldom calculated for more than a given percentage of OTBSAF simulations,
even when initial conditions are the same. Many program executions are commonly required to
determine statistical confidence in a result. OTBSAF, however, has no automatic provision for
ending combat simulations; once started, OTBSAF requires the operator to stop the simulation
when s/he judges that some set of termination parameters has been met.

During the simulation, the operator can “save” current conditions into a computer file which may
be used to set up a new simulation at a later time, even the next day or month. When the
conditions are re-loaded, the saved file does the initialization and the operator may then simply
monitor the execution (through the graphical user interface [GUI]) to determine at a later time
when the simulation has progressed enough to determine combat results. Then the same
initialization may be done again and a new calculation may be started, perhaps to end in a
different result some time later. After dozens of restarts, the operator may have enough
statistical results to determine probability of a certain outcome and its confidence level.

Features to allow “unmanned” iterations of OTBSAF were created so that multi-run studies
could be easily accomplished without work stations being constantly attended during the
simulations. The two major features supplied are a maximum run-time value and a method of
stopping execution based on kill levels of vehicles. Both features are user implemented via the
OTBSAF execution statement.

2. Changes in Source Code — Maximum Run Time Shutoff

2.1 Subdirectory sr¢/OTBSAF

The main.c code and main.h header (appendices A and B, respectively) are modified to allow an
extra execution line input value at run time. The main.h header file defines the options structure,
and parameters are added with type definitions and default values.

The maximum run time parameter is named “run_duration” and may be added to the execution
line as the option “-run_duration xxx” where the xxx is an integer value of milliseconds to be
compared to internal program time of execution as the run progresses. A call within main.c to
the scheduler subroutine initiates execution of the “main_clean_up” routine at time “xxx”.

When run time is equal to or greater than the entered value, main_clean _up shuts down the
program gracefully, closing necessary files and removing any temporary data stored from the
program execution. Default value of the shut-down time is 0 (zero), which is used to signify that
the program does not schedule a function call to the main_clean_up routine.

The number of milliseconds to enter for stopping a simulation depends upon how long the
operator determines the combatants will require to accomplish the assigned missions. Usually,
the best way to establish this value is to observe an example of the study and note the program
start and end times. Adding 25% to 50% more time for the scenario should give enough time for
most variations to finish.

This function was developed by the OneSAF team at U.S. Armament Research, Development,
and Engineering Center, Picatinny, Arsenal, New Jersey (2).

3. Changes in Source Code — Shut-off Based on Vehicle Kill Percentage

3.1 Subdirectory src/OTBSAF

The parameters that control program shut-down because of damage of vehicles are “bpct,”
“rpct,” “bk_lev,” and “rk_lev”. Again, these are execution line parameters, which are used as in
“-bpct 50,” where the parameter name is always preceded by a “-” sign and the value is
interpreted as an integer. To enter percentage levels of vehicles (blue and red armies,
respectively) killed during the run execution, “bpct” and “rpct” are used. The value “50” stands
for “50%” of combatants killed. When the percentage level of killed vehicles within the
designated army reaches or exceeds the desired percentage, the program will generate a call to

main_clean up and terminate.

Kill levels “bk _lev” and “rk lev” are used to compare with vehicles as they are checked for
damage. Levels are defined as 1 through 4, where level 4 requires the vehicles to sustain
catastrophic damage in order to be counted killed. Level 3 allows either catastrophic or mobility
and firepower (M&F) damage for counting kills. Level 2 allows any level of damage that
includes firepower impairment to be counted as a kill. Level 1 includes any vehicle whose
damage level is other than “healthy” to be counted as a kill. If “rk lev” is 3 and “bk _lev” is
zero, then the blue army’s vehicle damage will not be part of the run stop tests, but red army
vehicles suffering catastrophic or M&F kills will be counted. If “rk lev” is zero and “bk lev” is
also zero, then no run termination will be done for vehicle damage counts, no matter what values
have been entered for “bpct” and “rpct”. Default values are all 0 (zero).

The changes in OTBSAF source code in the src/OTBSAF directory are in main.c and main.h (see
appendices C and D). As with “run_duration,” the four parameters are defined in the data
structure “main_options_struct” within main.h. Code in main.c copies values from the structure
into like-named parameters within a file /ibkillstop.h (appendix E) included in the headers for the
main.c routine.

3.2 Subdirectory libsrc/libentity

Two files were written for this directory to look for vehicle kill levels, and both check list.c and
print_vehicle info.c (appendices F and G) are defined as externals in the /ibentity.h (appendix H)
header file. The subroutine ent tick (in file ent tick.c; appendix 1) calls check list during
program execution with vehicle identification (ID) values for all known vehicles during the
OTBSAF run. A dynamically linked list of vehicle IDs is built by check list for comparison as
the OTBSAF run progresses. When a new valid vehicle ID is found, check list performs two
tasks: it calls sched periodic_fncl to schedule a once-per-minute entry to print_vehicle_info for
determining vehicle suitability and damage level, and it adds a new node containing the new
vehicle ID to the linked list. Besides individual vehicles, aggregate vehicle formations (platoons,
companies, etc.) also have vehicle IDs sent to print _vehicle info. To avoid counting these
aggregate entities, the linked list entry is tested for this condition and the function exits before
the status of non-single vehicle IDs is examined.

Subroutine print vehicle info is called once per minute per vehicle, so the vehicle status is
evaluated only once each 60 seconds of OTBSAF run time. The print vehicle info routine
keeps track of the integer minute value of the system clock during each call; as long as the
minute value remains the same for successive entries, the total number of blue (or red) vehicles
is increased with each call. At each call, if the vehicle is damaged, at least “bk lev” (or
“rk_lev”) an additional killed vehicle counter is increased. At the first instance when the minute
value does not match the previous value, we determine a percentage of army kill by multiplying
the counted kills by 100 and dividing by the total number of blue or red army vehicles. The
result is compared to “bpct” or “rpct” to test whether to stop the OTBSAF run. If the killed
percentage is too low, the vehicle and kill counts are set to 0 (zero) and counting begins again for

the current minute. If the damaged vehicle percentage matches or exceeds the “bpct” or “rpct”
value, then print_vehicle info initiates a call to the main_clean_up routine to stop the simulation.

Subroutine print vehicle info also writes current vehicle and kill counts into a local file called
“VehicleInfo” (example in appendix J) during each damage test. If this file is not removed after
the OTBSAF run stops, new information from subsequent run(s) will be appended.

A header file called libkillstop.h in the libsrc/libentity directory is used to define the four kill-
related values to print vehicle info.c (and to main.c from the src/OTBSAF directory). The
header file needs to be copied to the include/libinc directory so it can be accessed by both the
main and print_vehicle_info object files during program linking; we do this by defining
libkillstop.h as a header in the GNUmakefile.in source code (printed in appendix K) and in its
derivative GNUmakefile. Also, check list.o and print vehicle info.o are added to the list of
object files in the GNUmakefile.in coding.

3.3 Additional Files

In order to manage automated simulations, two files are needed for program initiation and
execution. The first file is a controller containing execution statements and pertinent execution
line parameters. A sample execution line may look like this:

Jotbsaf —nonet —run_duration 300000 —rpct 75 —rk_lev 3 —parser —sourcefile ./inpt

In this situation, the maximum run time is set at 5 minutes (300,000 milliseconds), and a stop
feature is set for red vehicles reaching a 75% kill percentage (kill at level 3 is defined as either
catastrophic damage or a combination of M&F damage). The program takes its initial setup via
information parsed from a second file (here called “./inpt”) containing OTBSAF commands to
reference a pre-stored scenario of starting positions for vehicles and other OTBSAF objects. The
input might be:

scenario load RDA.1.gz

in which scenario RDA.1 is the name of the scenario and the information is stored in an archived
file which the program calls by its full name “RDA.1.gz” in order to initialize the simulation.
The scenario should also contain vehicle mission data, since the operator will not be able to enter
commands during an unattended run. Other commands may also be given in this file, such as

run 2.0 0

which directs the program to run at twice the normal execution speed. An example of a parser
information file is printed in appendix L.

To run OTBSAF in background, one should use the Unix! “at” command to schedule a run (or a
series of runs) at a later time. Using the “&” to put an OTBSAF run in current background
execution does not work well, as the program may hang up during initialization.

4. Adding Features to OTBSAF Version 1

Although only two subdirectories receive new source code, several other OTBSAF locations are
changed at compilation time. The steps necessary to properly add the features include the
following.

4.1 Subdirectory libsrc/libentity

Insert the new source code containing definitions of the external object codes check list.o and
print_vehicle info.o into libentity.h so that compiled code can reference them.

In ent tick.c, add the new code calling check list with vehicle ID numbers during simulation
execution.

Add check _list.c, print_vehicle_info.c, and libkillstop.h as completely new files.

In GNUmakefile and GNUmakefile.in, add the code referencing the new object files and header
file.

Execute a “gmake clean,” then “gmake all” in the libentity directory to recompile all source code
and to copy the new header files into the include/libinc directory. If compiling finishes without
error, the new object codes will be archived as /ibentity.a into the /ib subdirectory.

4.2 Subdirectory src/OTBSAF

Insert new source code into main.c and main.h containing definitions of the new parameters and
entering values for them into the /ibkillstop.h header variables.

Execute “gmake otbsaf” to create the main.o object file and link it to all the other object files
from the /ib subdirectory.

Use otbsaf for an interactive simulation, or add the execution line parameters to create a halt to
execution when run time reaches a maximum value or when vehicle kill percentages reach a
prescribed limit.

Create a batch run file to automatically start and stop non-interactive simulations, such as the
script doit in appendix M. In this example, a file named inpt contains information defining the

1Unix is a trademark of Bell Laboratories.

scenario to be loaded. Examples of output files from an OTBSAF simulation are in file out/ and
Vehiclelnfol (appendices N and J, respectively); the looping feature in the controller file causes
output and Vehiclelnfo file names to have the final digit increased with each simulation. Note
outl lists all the execution line input, including values for kill percentages and levels and for a
maximum run time limit.

5. Summary

The additional features allow multiple OTBSAF simulations without user intervention. Output
files may be scanned to determine combat results and statistical information from the automatic
simulations.

Using the vehicle kill percentage method to stop simulations should also require a run time
termination value, since it cannot be guaranteed that the desired percentage of vehicles will be
killed (or damaged) before combatants pass each other in terrain or before all available
ammunition is expended.

6. References

1. OTBSAF, Version 1, Lockheed Martin Information Systems, Martin Marietta Technologies,
Inc., 12506 Lake Underhill Road, Orlando FL, under STRICOM Advanced Distributed
Simulation IT Contract Number N61339-96-D-0002, Delivery Order 97, September 1998.

2. Matyola, Maryann. OTBReflector Communication; AMSTA-AR-FS-H; U.S. ARDEC:
Picatinny Arsenal, NJ, 3 January 2003.

INTENTIONALLY LEFT BLANK

Appendix A. main.c Code Changes for Maximum Run Time Feature

PARSE_TABLE *mai n_t abl e_ptr;

struct mmin_options_struct nain_options = {
/* start of new code */

{

"Run Duration", "Specifies the length of OB run in nilliseconds",
NULL, CMD I NTEGER, "run_duration", NULL, O, O

}

'/* end of new code */

int main(
i nt argc,
argv_t argv)

int status = nmain_init(argc, argv);

/* start of new code */

if (main_options.run_duration.val ue)
sched_deferred_fncl ((SCHED _FUNCTI ON) mai n_cl ean_up,
mai n_options.run_duration.value, 0, A END);
/* end of new code */

INTENTIONALLY LEFT BLANK

10

Appendix B. main.h Changes for Maximum Run Time Feature

extern struct main_options_struct

CVD_| NTEGER _OPTI ON run_durati on; /* new code */
#i f def USE_MOTI F

CVMD_TOGGLE_OPTION gui ;

CVD_TOGGELE_OPTI ON gui war ni ngs;

11

INTENTIONALLY LEFT BLANK

12

Appendix C. main.c Code Change for Vehicle Kill Percentage Termination

#include <libvterrain. h>
#i nclude <libkillstop. h> /* new code */

struct main_options_struct main_options = {
/* start of new code */

"Blue Kill Percentage", "Specifies percent of blue vehicles killed for run
st oppage",

NULL, CMD_| NTEGER, "bpct", NULL, 0, O

b

"Red Kill Percentage", "Specifies percent of red vehicles killed for run
st oppage",

NULL, CMD_I NTEGER, "rpct", NULL, 0, O

b

{

"Blue Kill Level","Specifies level of kill for blue vehicles for run
st oppage",

NULL, CMD_I NTEGER, "bk_lev", NULL, O, O

b

"Red Kill Level","Specifies level of kill for red vehicles for run
st oppage",

NULL, CMD_I NTEGER, "rk_lev", NULL, O, O

}

’/* end of new code */

int main(
i nt argc,
argv_t argv)

int status = main_init(argc, argv);

if (status)
return status;

rpct = main_options.rpct.val ue; /* new code */
bpct = mai n_opti ons. bpct. val ue; /* new code */
bk _|ev = mai n_options. bk_| ev. val ue; /* new code */
rk_lev = main_options.rk_|ev.val ue; /* new code */

13

INTENTIONALLY LEFT BLANK

14

Appendix D. main.h Code Changes for Vehicle Kill Percentage Termination

extern struct main_options_struct

CVD_| NTEGER _OPTI ON bpct ; /* new code */
CMVD_| NTEGER_OPTI ON r pct ; /* new code */
CVD_| NTEGER_OPTI ON bk_| ev; /* new code */

CVD_| NTEGER OPTION rk_|ev; /* new code */

15

INTENTIONALLY LEFT BLANK

16

Appendix E. libkillstop.h Header File

/* libkillstop.h */

/* header to hold values for determ ning whether to stop conputation */

/* because of percentage killed vehicles (red or blue) */
i nt 32 bpct,

rpct,

bk_I ev,

rk_Iev;
/* bpct = cutoff percentage when blue kills reach this level */
/* rpct = cutoff percentage when red kills reach this |evel */
/* bk lev = definition of blue kill */
/* 1 =Kkill when at least nobility is disabled */
/* 2 = kill when at |east firepower is disabled */
/* 3 = kill when at least nmobility and firepower are disabl ed*/
/* 4 = kill when catastrophi c damage */
/* rk lev = definition of red kill */

17

INTENTIONALLY LEFT BLANK

18

Appendix F. check_list.c Function Source Code

#i nclude "libent | ocal.h"

#i ncl ude <stdlib. h>

#i ncl ude <l i bsched. h>

/* #include <liblocale. h>*/
#i ncl ude <stdext. h>

#i ncl ude <l i bcl ass. h>

#i ncl ude <libtine. h>

/* Structure for the nodes of the dynanmically linked Iist */
typedef struct |ist_node {

Forcel D ny_force;

Vehi cl eMar ki ng ny_mar ki ng;

struct list_node *Ilink;
}Li st _Node

typedef List_Node *list_pointer

void check_list (int32 vehicle_id)
{
int32 found _marking = 0;
Vehi cl eMar ki ng nmar ki ng;
Forcel D force;
static list_pointer my_list = NULL
[ist_pointer newNodePtr = NULL
list _pointer currPtr = NULL
list _pointer checklist = ny_|ist;
ent _get _mar ki ng(vehicl e_i d, &ar ki ng) ;
force = ent_get force_id(vehicle_id);

if (checklist) // if the list is not enpty
{

found_marki ng = O;
whi l e (checklist !'= NULL)

{
i f (strcnp(marking.text,checklist->my_marking.text) == 0)

if (force == checklist->my_force)

{
found_nmarking = 1;
br eak;

}

currPtr = checklist;
checkl i st = checklist->link

}
if (found_nmarking != 1)
{

sched_periodi c_fncl (print_vehicle_info,tine_|last_simulation_clock+5000,
60000, 747, A_I NT, vehicl e_i d, A_ END) ;
newNodePtr = (list_pointer)malloc(sizeof (List_Node));

19

newNodePtr->ny force = force;
newNodePt r->ny_nmar ki ng = mar ki ng;
newNodePtr->link = NULL;
currPtr->link = newNodePtr;

}

}
else // if the list IS enpty
{

sched_periodi c_fncl (print_vehicle_info,tinme_last_simnulation_clock+5000, 60000,
747, A I NT,vehicle_id, A END);

ny list = (list_pointer)malloc(sizeof (List_Node));

my_list->ny force = force;

nmy_list->nmy_marking = marking;

my_list->link = NULL;

20

Appendix G. print_vehicle_info.c Function Source Code

#i ncl ude <stdext. h>

#i nclude <libkillstop. h>
#include "libent | ocal.h"

#i ncl ude <veh_appear. h>

[* #include <liblocale. h> */
#i ncl ude <l i bcl ass. h>

#i nclude <libtine.h>

#i ncl ude <l i bcoordi nates. h>
#i ncl ude <sys/tine. h>

#i ncl ude <string. h>

int32 print_vehicle_info(int32 Vehicle_ID)

{
static FILE *QutFil e;
static int32 penFile = 0;
char resul t[20],

appear ance_stri ng[20],
col or _string[10];

ui nt 32 appear ance;

Forcel D force;

Vehi cl eMar ki ng nmar ki ng;

static int32 t npr _blue = 0,
tnpr_red 0,
num bl ue 0,
numred = 0,
nbk 0,
nrk 0;

i nt32 i =0,
headi ng_degr ees,
cel |

fl oat 64 pos[XYzC] ,
pitch,
roll
speed = O,
headi ng,
It,
I n,
Z,

time_t timep;

struct tm t nm

struct tinmeval tv;

struct timezone tz;

if (!'bk_lev & Irk_Iev)
return O;

if (OpenFile == 0)

{
QutFile = fopen("Vehiclelnfo","a");

21

/*
fprintf(QutFile,"Color\tURN\tTi ne\tPosition\tAl t\tSpeed\tHeadi ng\tAppearance\
n"y); */

fprintf(QutFile,"Color\tURN\tTi me\tAppearance\t NB\t NBK\t NR\t NRK\ n") ;

penFile = 1;
}
ent _get _mar ki ng(Vehicle_ID, &marking); // Get vehicle' s marking
[* if this is not an individual vehicle (i.e., platoon or |arger),
return */
if (strlen(marking.text) < 6)
{
/* fprintf(QutFile,"%\t", marking.text); */
return O;
}
if (strchr(marking.text,32) != NULL)
{
/* fprintf(QutFile,”% contains blank\n”, marki ng.text); */
return O;

{

getti meof day(&t v, &t z);

timep = tv.tv_sec;

tnm = *gmine(&inep);

force = ent_get force_ id (Vehicle ID);

if (force == distinguishedForcelD & bk _lev > 0)
{
sprintf(color_string,"Blue");
if (tnpr_blue !'= tnmtmnmnin)
{
i f (num_bl ue)
i f ((100*nbk)/numblue + 1 > bpct)
{

fprintf(QutFile,"\n Stop Blue\n\n");
mai n_cl ean_up() ;

num bl ue = 0;
nbk = 0;

tnpr_blue = tmMmtmm n;
num bl ue = num bl ue + 1;

appearance = ent_get appearance (Vehicle ID);
i f (appearance & (vehDestroyed | vehFl aning))
{
strcpy (appearance_string, "K kill");
nbk = nbk + 1;

el se if ((appearance & vehFirepowerDi sabl ed) &&
(appearance & vehMobilityDi sabl ed))

{
strcpy (appearance_string, "FMKkill");
if (bk_lev < 4)
nbk = nbk + 1;
}

22

el se if (appearance & vehFirepower D sabl ed)

strcpy (appearance_string, "Fpr kill");
if (bk_lev < 3)
nbk = nbk + 1;

el se if (appearance & vehMbilityDi sabl ed)
strcpy (appearance_string, "Ml kill");

if (bk lev == 1)
nbk = nbk + 1;

}
el se
{
strcpy (appearance_string, "Healthy");
else if (force == otherForcelD & rk_lev > 0)

{
sprintf(color_string,"Red");
if (tnpr_red '=tmmtmmn)

{
i f (numred)

if ((100*nrk)/numred + 1 > rpct)
fprintf(QutFile,"\n Stop Red\n\n");
mai n_cl ean_up();

}
numred = O;
nrk = 0;
}

tnpr_red = tmmtmnmin
numred = numred + 1

appearance = ent _get appearance (Vehicle ID);
i f (appearance & (vehDestroyed | vehFl am ng))
{
strcpy (appearance_string, "K kill");
nrk = nrk + 1;

el se if ((appearance & vehFirepowerDi sabl ed) &&

(appearance & vehMobilityDi sabl ed))

{
strcpy (appearance_string, "FMKkill");

if (rklev<4)
nrk = nrk + 1;
else if (appearance & vehFirepower Di sabl ed)
strcpy (appearance_string, "Fpr kill");
if (rk_lev <3)
nrk = nrk + 1;
else if (appearance & vehMbilityDi sabl ed)

strcpy (appearance_string, "Ml kill");

23

if (rklev ==1)
nrk = nrk + 1;

}
el se
{
strcpy (appearance_string, "Healthy");
}
else if (force == neutral Forcel D)
sprintf(color_string,"Geen");

el se
sprintf(color_string, "Bl ack");

[* ent _get_position_gcs (Vehicle_ID, pos); // Get vehicle's position//
*/

/* if (!coord _convert (COORD GCS, (int32) pos[CELL3D], pos[X], pos[Y],
0.0, COORD_LATLON, &'t, & n, &, TRUE)) */

/* strcpy (result, coord _format _latlon (It, In)); */

[* else */

/* strcpy (result, "?"); */

/* */

/* ent _get _orientation_gcscs (Vehicle ID, cell, &heading, &pitch,
&oll); /1 Get vehicle's orientation in radians */

/* headi ng_degrees = (int32) RAD TO DEG (heading); // Convert
vehicle's orientation fromradians to degrees */

/* i f (heading degrees < 0) */

/* { =/

/* headi ng_degrees += 360; */

/* Yo/

/* speed = ent_get speed (Vehicle ID); // Get vehicle's speed */
if (ent_is_ic (Vehicle_ID))

sprintf (appearance_string, "% (%)", appearance_string,

(appearance & |fPositionMask) == | fPositionProne ? "Prone" :
(appearance & | fPositionMask) == | fPositionCrawiing ? "Craw i ng"
(appearance & | fPositionMask) == |fPositionSitting ? "Sitting"
(appearance & |fPositionMask) == |fPositionCrouching ? "Crouching”
(appearance & |fPositionMask) == | fPositionKneeling ? "Kneeling"
(appearance & |fPositionMask) == | fPositionStanding ? "Standing"
(appearance & |fPositionMask) == |fPositionWal king ? "Wl ki ng"
(appearance & |fPositionMask) == | fPositionRunning ? "Runni ng"

"Gt her");
}

fprintf(QutFile,"%\t", col or_string);
fprintf(QutFile,"%\t", marking.text);

/* fprintf(QutFile,"%\t", ctime(&inep)); */

/* fprintf(QutFile,"%\t", result); */

/* fprintf(QutFile,"%3f\t",ent _get _altitude_agl(Vehicle ID));*/
/* fprintf(QutFile,"%3f\t", speed); */

/* fprintf(QutFile,"%l\t", headi ng_degrees); */

fprintf(QutFile,"%\t", trmtmnmnin);
fprintf(QutFile,"%\t\t", appearance_string);
fprintf(QutFile,"%\t", num bl ue);

24

fprintf(QutFile,"%l\t", nbk);
fprintf(QutFile,"%l\t", numred);
fprintf(QutFile,"%l\n", nrk);
return O;

25

INTENTIONALLY LEFT BLANK

26

Appendix H. libentity.h Header File Source Code Additions

)**

** Functions relating to global |ibentity operation

* %

**/
extern void check_list (int32 vehicle_id); /* new code */
extern int32 print_vehicle_ info(int32 Vehicle ID); /* new code */

27

INTENTIONALLY LEFT BLANK

28

Appendix 1. ent tick.c Source Code Addition

/* Return if tick is suspended */
i f(ent->suspend_tick)
return;
check_list (vehicle_id); /* new code */

if (!(1'S_AGGREGATE(ent)))
{

29

INTENTIONALLY LEFT BLANK

30

Appendix J. Sample Vehiclelnfo File

Col or
Bl ue
Bl ue
Bl ue
Bl ue
Red
Red
Red
Bl ue
Red
Red
Bl ue
Red
Bl ue
Bl ue
Bl ue
Bl ue
Red
Bl ue
Red
Red
Bl ue
Bl ue
Bl ue
Red
Bl ue
Red
Red
Bl ue
Bl ue
Red
Bl ue
Bl ue
Red
Red
Bl ue
Bl ue
Bl ue

URN

100A11
100A12
100A13
100A14
100A11
100A12
100A13
100A11
100A13
100A12
100A13
100A11
100A12
100A14
100A11
100A14
100A13
100A12
100A11
100A12
100A13
100A11
100A13
100A12
100A14
100A11
100A13
100A12
100A11
100A13
100A12
100A13
100A11
100A12
100A14
100A11
100A14

Stop Red

oooo\J\Jﬁ\l\l\l\lmmmmmmmmmmmmmmhAhhhhhwwwwwwwg

Appear ance
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
Heal t hy
K kil

K kil
Heal t hy
Heal t hy
Heal t hy

31

NFPPRPWWWNREPEPRARWWWNNREPRWWWNNEPAWONNRPRPEPRARRRARDNWONELZ

oy}

eNeoNoolololololoololooNoNololooloNoloololoNololololololololNo o NoNeNe Ry g

og}
A

WWWWNERPPRPPWWWNPEPPRPWOWOWWWNRERPPRPWWWWWNNPWWNRPRPOOOOZ

Py

NNNMNNPFRPOOOOOOOOOO0OO0OO0O0O0OO0OO0O0000O0O00000CO0O0O0000O0O00O00O 22

2

INTENTIONALLY LEFT BLANK

32

Appendix K. File GNUmakefile.in

srcdir=@rcdir@

COVPRESS DATA=@COVPRESS DATA@
&I P=@xZl P@
VPATH=@r cdi r @
top_srcdir=@op_srcdir@
CC=@C@

CXX=@xXX@
CPPFLAGS=@PPFLAGS@
CFLAGS=@FLAGS@
CXXFLAGS=@XXFLAGS@
AR=@GAR@
ARFLAGS=@ARFLAGS@
CXX_AR=@CXX_AR@
CXX_ARFLAGS=@CXX_ARFLAGS@
RANL| B=@RANL| B@
RLFLAGS=@RLFLAGS@
LDFLAGS=@Q.DFLAGS@

LI BS=@.| BS@

JREDI R=@REDI R@

JREHOVE=@ REHOVE@
JAVAC=-@ AVAC@

JAVAH=@ AVAH@
JAVACFLAGS=@ AVACFLAGS@
JAVAHFLAGS=@ AVAHFLAGS@
JAVAI FLAGS=@ AVAI FLAGS@
JAVACLASSES=@ AVACLASSES@
JAVA SAF=@AVA_ SAF@

targetroot =@ ar getroot @
t ool sbi ndi r=@ ool sbi ndi r @

OBJECTS =\

ent _wrapper.o \
ent _class.o \
ent _coord.o \
ent _depend. o \
ent_init.o\
ent _parans. o \
ent _pdus.o \
ent_rva.o \
check list.o \
print_vehicle_info.o \
ent_tick.o \
ent _update.o \
ent_set.o \
ent_get.o \

ent _event.o

L1 BNAMVE
HEADERS

entity
libentity.h libkillstop.h

LOCAL_HEADERS = |ibent | ocal.h
SAF_MODEL = SM Entity

PROTO PREFI X = ENTITY

TYPES = ent.tdl

EXTRA CLEAN FILES = ent.td

READERS = \

ent _artics.rdr \

ent _timers.rdr

FUNCTI ON_PREFI X = ent _

JAVA WRAPPERS = EntityWapper.java

i ncl ude $(top_srcdir)/makei ncl ude/ make. li brul es

34

Appendix L. Sample Parser File

scenario load rda4. 1.9z
run 1.0 0

35

INTENTIONALLY LEFT BLANK

36

Appendix M. Controller File for OTBSAF Simulations

cd / gl/ wab/ andy/ OTB. Feb03/ sr c/ OTBSAF

HERE=" pwd"
echo $HERE

for i in123
do

$HERE/ ot bsaf -nogui -nonet -parser -sourcefile $HERE/ parsefile.in -
run_duration 720000 -bpct 50 -rpct 50 -bk lev 3 -rk_|lev 3 >$HERE/ out s/ out $

echo >> $HERE/ out s/ out $

echo >> $HERE/ outs/out$i " otbsaf run$i ended " >>$HERE/ outs/out$

echo >> $HERE/ out s/ out $

nmv Vehi cl el nf o $HERE/ out s/ Vehi cl el nf o$i

done

37

INTENTIONALLY LEFT BLANK

38

Appendix N. Sample Simulation Output File

OTBSAF OTBSAF Version 1.0

Process I D: 29040

OTBSAF built on gawain.arl.army.m!| - (Linux 2.4.21-27.0.1.EL) at Tue Jan 11
13: 00: 32 EST 2005 by andy

Net wor k: OF f
Packet Tee Port: O
Synchr onous UDP: True
D'S: True
DS Version: 4
DS UDP Port: 3000
Bundl e DI S PDUs: Fal se
Mul ticast TTL: 32
Uni cast Address: (null)
Articul ati on Dead Reckoni ng: Fal se
Si mul ati on Address Override: 0 O
Send Stealth ESPDUs: Fal se
Pkt val ve Buffer Pool Size: 8192
Body Centroid: Fal se
Terrai n Dat abase: knox-0311
TDB Directory: ../../terrain
GCS Cel I: none
TDB Menory: 10
TDB Integrity Check: True
Blue Kill Percentage: 50
Red Kill Percentage: 50
Blue Kill Level: 3
Red Kill Level: 3
Run Duration: 720000
a: Of
QU warnings: Of
Activate: Of
Si mul ate: On
PO Send Enabl ed: True
Dat abase 1D 1
Monitor log directory: ../../logs/nonitor
Benchmark: 0
Zoom Benchmar k: O f
Def aul t Conpet ence: 0.500000
Vul nerability Modifier: 1.000000
Stealth Previews: 0
Mul ticast Agent: Fal se
Absol ute Ti nestanps: Fal se
Trust Ti nestanps: Fal se
Vehi cl e Loadi ng Factor: 0.010000
Views Directory: ../../views
View file: (null)
Tenplate Directory: ../../tenplates
Tenplate file: (null)
Standard Load Directory: ../../stdl oads

39

Data Directory:

Shared Ohject Directory:

Dunp schedul er information

Oversi ze Cursor:

Use Rout eMap:

Menory Mbnitor:

Use MobdStealth Protocol:

Use Parser:

Use sourcefile:

/ g1/ wab/ andy/ OTB. Feb03/ sr ¢/ OTBSAF/ par sef i

Send St at usChange PDUs:

Send Tgt Acq VWA PDUs:

Send Del Acc WA PDUs:

Send Df Dam VWA PDUs:

Send | f Dam WA PDUs:

MKi || cants vehicle:

FKi Il droops gun

Best Mat chi ng Anmo:

Detect floating point exception

Rel ative Battle Schene:

Modi fy Conpet ence

Force non-constant environment:

Di sabl e dust behavi or:

Enabl e phenonenol ogy behavi or:

Enabl e environmental nobility:

Envi ronnent al Weat her Sinul ator:
Envi ronnental Sea State Simul ator
Gi dded Weat her Si mul at or

Envi ronnental Statistics:

Snmoke Cl oud Representation

Envi ronnent Deno Mode:

Dynam c Terrain Qperations:

DT Si nul at or:

DT Scri be:

Scri be Backup File Path:

Scri be Backup File:

Use of Existing Scribe Backup File:

New Subscriber initial pause:

New Subscri ber burst pause:

M nes Orientation Present:

M nes Burial Depth Present:

M nes Tenperature Present:
Enabl e AF nodel

ASPDU:

M grati on:

Net work Monitor Interval:

Net wor k Moni t or Address:

Sinple | FF:

Supply Consunpti on:

Random Fai | ures:

Send Alerts:

Thi nned TDB Swi t chi ng Zoom Level :

Draw MES Distinctly:

Open Agent Architecture (Conmand Tal k) :

Open Agent Host:

Open Agent Port:

Open Agent Server Type

40

../..ldata
... 1lib
Fal se

On

True

o f

True

True

e.in
Fal se
Fal se
Fal se
Fal se
Fal se
True
True
True
Fal se
O f
True
Fal se
True
True
Fal se
Fal se
Fal se
Fal se
Fal se

2

Fal se
Fal se
Fal se
Fal se
..1../logs
scri be[exerci se_id]
di scard
1000

1

Fal se
Fal se
Fal se
Fal se
On

On

-1
fff.fff. fff.fff
Fal se
Fal se
Fal se
Fal se
50000
Fal se
O f

| ocal host
6666
True

Use Ordnance Server: Fal se
Print Extended Version/Build Info: False
Stow Units Only: Fal se
Bl ock Sending of Em ssions PDUs: none
KKi Il detonation: False
Terrain has contamni nation: Fal se
Test Procedures: (null)
Random Seed: O
Enabl e Async Tine: Fal se
Repeat abl e Mode: Fal se
RWA Model high fidelity: True
Enabl e bui | di ng boundi ng box bundling: Fal se
Load Scenario: Of
Checkpoi nt Exercise: Of
| conify MbdSAF QU : O f

Readi ng terrain: knox-0311...

Dat abase Knox-0311 created Wed Dec 18 11:18:08 1996

Terrain Format 7 with the follow ng features:
UTM flat, M XED TIN & CGRI D PCST,

Gid Spacing (METERS): 125

Fi xed point basis : 0.01907349

Oigin at 4155000N 545000E in UTM zone 16S (dat um WGS84)
M ni mum (SW Corner) (X, Y) : (0. 00, 0. 00)
Maxi mum (NE Corner) (X, Y) (75000. 00, 50000. 00)

M ni mum El evati on o 0. 00)

Maxi mum El evati on (306. 99)

2729 nodes (86KB), 3440 edges (189KB), 33962 abstract data (133KB)
Successfully read 1 cell.

Loadi ng preconputed routemap file ../../terrain/knox-0311.rnl..
done.

Using a default of site:29040 host: 5303.

Pkt val ve all ocating a pool size of 8192 buffers

Envi ronnent: Ski ppi ng environment. rdr

(No initialized nodels will be ignored.)
Reading indirect fire delivery accuracy file "cnbt _ifdata.rdr"...
Reading indirect-fire ICMfile "ifdamicmrdr"”..
Reading indirect-fire HE file "ifdam he.rdr". ..

Reading indirect-fire damage in "ifdamrdr"...

Max cutoff for indirect fire detonations is 300 neters.
Using data in physdb for inherent contrast.

Readi ng protocol conversion rules..

Readi ng nodel configuration files from../../data/entities/nodellist.rdr..

Successfully read 281 of 281 nodel configuration files!

Readi ng dtoconst.rdr from../../data

41

Initializing DTAgent for CTDB
Warning: DISimfailed to read d3b database file
Running in normal tine node.
Warning: Failed to initialize |ibmso.
Warning: Cultural Features will NOT be sensed
OTBSAF @ GAWAI N> Sourcing file
/ g1/ wab/ andy/ OTB. Feb03/ sr c/ OTBSAF/ parsefile.in..
1:scenario | oad rda4.1.gz
Readi ng scenario file
Loadi ng Scenari o
Loadi ng portabl e scenari o:
Created: "GAWAI N'
SAF Version: "OIBSAF OIBSAF Version 1.0"
Loadi ng nodul e SM URadar Sect or s
Loadi ng nodul e SM UReact Qbst
Loadi ng nodul e SM UReact | F
Loadi ng nodul e SM UReact Snoke
Loadi ng nmodul e SM UReact Ai r
Loadi ng nodul e SM VRecei veRepai r
Loadi ng nodul e SM VRecei ve
Loadi ng nodul e SM VCol | i de
Loadi ng nodul e SM VOPReact Ai r
Loadi ng nmodul e SM_VMMVCM
Total Objects: 283
Processed: 283
Danmaged: O
Corrected: O
Created: 283
OTBSAF @ GAVAI N>
2:run 1.0 0
Running in real tine
OTBSAF @ GAVAI N. . . fini shed sourcing file
/ g1/ wab/ andy/ OTB. Feb03/ src/ OTBSAF/ parsefile.in

OTBSAF @ GAWAI N> Reading direct fire damage mapping file

"df dam nf _MLA2.rdr"..

WIIl cache Fire PDUs for damage from "nunition_US MX943 subnun"
Readi ng m ne damage file "dfdam ML_mines.rdr"...

Readi ng direct fire delivery accuracy file "bgun_2A001.rdr"...
Reading direct fire delivery accuracy file "bgun_2A002.rdr"...
Readi ng direct fire delivery accuracy file "bgun 2A004.rdr". ..
Reading direct fire delivery accuracy file "bgun AG.rdr"...
Readi ng direct fire delivery accuracy file "bgun_AG..rdr"...
Readi ng direct fire delivery accuracy file "bgun_AG..rdr"...
Reading direct fire delivery accuracy file "bgun_AGL.rdr"...
Readi ng direct fire delivery accuracy file "bgun 2A004.rdr". ..
Readi ng direct fire damage mapping file "dfdamnf_T72Mrdr". ..
Readi ng m ne danmage file "df dam USSR T72_m nes.rdr". ..

Reading direct fire delivery accuracy file "bgun_3A002.rdr"...
Reading direct fire delivery accuracy file "bgun_3A003.rdr"...
Readi ng direct fire delivery accuracy file "bgun_3A006.rdr". ..
Reading direct fire delivery accuracy file "bgun _3A005.rdr". ..

ot bsaf runl ended

42

NO. OF

COPIES ORGANIZATION

*

ADMINISTRATOR

DEFENSE TECHNICAL INFO CTR
ATTN DTIC OCA

8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

*pdf file only

DIRECTOR

US ARMY RSCH LABORATORY

ATTN IMNE ALC IMS MAIL & REC MGMT
2800 POWDER MILL RD

ADELPHI MD 20783-1197

DIRECTOR

US ARMY RSCH LABORATORY

ATTN AMSRD ARL CIOK TL TECH LIB
2800 POWDER MILL RD

ADELPHI MD 20783-1197

DIR OF COMBAT DEVELOPMENT
ATTN ATZK FD W MEINSHAUSEN
BLDG 1002 ROOM 326

1ST CAVALRY DIV RD

FT KNOX KY 40121-9142

CDR US TACOM-ARDEC
ATTN AMSTA AR FSS J WALSH
PICATINNY ARSENAL NJ 07806-5000

TECHNOLOGY SVC ASSOC INC
ATTN JON NIDA

3361 ROUSE RD STE 240
ORLANDO FL 32817

CDR TRADOC

ATTN ATINZA R REUSS
ATINIT C GREEN

BLDG 133

FT MONROE VA 23651

OFC OF THE SECY OF DEFENSE
CTR FOR COUNTERMEASURES
ATTN M A SCHUCK

NO. OF

COPIES ORGANIZATION

3

WHITE SANDS MISSILE RANGE NM 88002-5519

CDR US ARMY ARMOR CTR & FT KNOX
ATTN TSM/ABRAMS COL D SZYDLOSKI

DIR UAMBL COL J HUGHES
FORT KNOX KY 40121

CDR US TACOM-ARDEC

ATTN AMSTA AR TD JHEDDERICK
B MADECK

PICATINNY ARSENAL NJ 07806-5000

43

1

CDR US TACOM-ARDEC
ATTN AMSTA AR FSP G A PEZZANO
R SHORR
AMSTA AR FSPIR COLLETT
PICATINNY ARSENAL NJ 07806-5000

CDR US TACOM-ARDEC

ATTN AMSTA AR CCH A M PALTHINGAL
E LOGSDON M YOUNG

PICATINNY ARSENAL NJ 07806-5000

US MILITARY ACADEMY

MATH SCIENCES CTR OF EXC
ATTN MDN MATH LTC LAMBERT
THAYER HALL

WEST POINT NY 10996-1786

CDR US ARMY MMBL

ATTN MAJ J BURNS

BLDG 2021

BLACKHORSE REGIMENT DR
FT KNOX KY 40121

CDR ARMY RSCH OFC
4300 S MIAMI BLVD
RSCH TRIANGLE PK NC 27709

CDR US ARMY PEO STRI
ATTN J STAHL

12350 RSCH PKWAY
ORLANDO FL 32826-3726

CDR US ARMY TRADOC

BATTLE LAB INTEGRATION 7 TECH DIR
ATTN ATCD BJ AKLEVECZ

FT MONROE VA 23651-5850

OFC OF THE PROJECT MGR
MANEUVER AMMUNITION SYSTEMS
ATTN S BARRIERES

BLDG 354

PICATINNY ARSENAL NJ 07806-5000

CDR US ARMY TRADOC ANALYSIS CTR
ATTN ATRC WBA] GALLOWAY
WHITE SANDS MISSILE RANGE NM 88002

CDR USAAMC

DEPUTY G3 CURRENT OPERATIONS
ATTN N BIAMON

5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

NO. OF

COPIES ORGANIZATION

1

CDR USAARDEC

ATTN AMSRD AAR AE COL P JANKER
BLDG %4

PICATINNY NJ 07806-5000

PEO SOLDIER

ATTN C TAMEZ

5901 PUTNAM ROAD

BLDG 328

FT BELVOIR VA 22060-5422

ABERDEEN PROVING GROUND

DIRECTOR

US ARMY RSCH LABORATORY

ATTN AMSRD ARL CI OK (TECH LIB)
BLDG 4600

CDR US ARMY TECOM

ATTN AMSTE CD B SIMMONS
AMSTE CD M R COZBY

RYAN BLDG

DIR US AMSAA
ATTN AMXSY D D SHAEFFER
W BROOKS
AMXSY CA G DRAKE/S FRANKLIN
BLDG 327

CDR US ATC
ATTN CSTE AEC COL BROWN
BLDG 400

DIRECTOR

US ARMY RSCH LABORATORY

ATTN AMSRD ARL WM] SMITH
T ROSENBERGER

BLDG 4600

DIRECTOR

US ARMY RSCH LABORATORY
ATTN AMSRD ARL WM B J MORRIS
BLDG 4600

DIRECTOR

US ARMY RSCH LABORATORY

ATTN AMSRD ARL WM BA D LYONS
AMSRD ARL WM BD B FORCH

BLDG 4600

DIRECTOR

US ARMY RSCH LABORATORY

ATTN AMSRD ARL WM BC P PLOSTINS
BLDG 390

44

NO. OF

COPIES ORGANIZATION

7

DIRECTOR
US ARMY RSCH LABORATORY
ATTN AMSRD ARL WM BF
R ANDERSON P BUTLER
M BARANOSKI W OBERLE
C PATTERSON JWALL
S WILKERSON
BLDG 390

DIRECTOR

US ARMY RSCH LABORATORY

ATTN AMSRD ARL WM B VANLANDINGHAM
AMSRD ARL WM MB DOWDING
AMSRD ARL WM MC M MAHER
AMSRD ARL WM MD W ROY
AMSRD ARL WM MA S MCKNIGHT

BLDG 4600

DIRECTOR

US ARMY RSCH LABORATORY

ATTN AMSRD ARL WM T P BAKER
AMSRD ARL WM TC R COATES
AMSRD ARL WM TB R SKAGGS

BLDG 309

DIRECTOR

US ARMY RSCH LABORATORY

ATTN AMSRD ARL WM TD SCHOENFELD
BLDG 4600

DIRECTOR

US ARMY RSCH LABORATORY

ATTN AMSRD ARL WM TE B RINGERS
BLDG 1116A

DIRECTOR

US ARMY RSCH LABORATORY

ATTN AMSRD ARL WM T M ZOLTOSKI
BLDG 393

